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J. Phys. A: Math. Gen. 16 (1983) 3313-3323. Printed in Great Britain 

The recursion method of a linear operator inversion: I11 

M Znojil 
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 67 Rei, 
Czechoslovakia 

Received 15 February 1983 

Abstract. We suggest constructing an inverse of the infinite-dimensional matrix Q by 
means of its recurrent algebraic decomposition into the easily invertible two-diagonal 
factors. The merits and feasibility of the method are illustrated on the five-diagonal 
matrices. Quartic and decadic-decadic anharmonic propagators are chosen as examples 
of the application. 

1. Introduction 

In  quantum mechanics, manipulations with matrices (Hamiltonians, transition 
operators, etc) are usually facilitated by their diagonalisation. Limitations of this 
technique may be both computational and interpretational in character. As a con- 
sequence, the direct use of the next, tridiagonal form of matrices is also quite frequent 
and may affect both the approximation schemes (Bassichis and Strayer 1978 etc) and 
the construction of models (e.g. Haydock and Kelly 1975). 

In the former context, one of the important characteristics of the infinite tridiagonal 
matrices is the,ir easy invertibility in terms of continued fractiocJ (Wall 1948). In 
paper I of the present series (Znojill976) we have, therefore, weakened the tridiagon- 
ality restriction and succeeded in inverting algebraically even the general Hessenberg 
matrix Qij (which is zero for all j 2 i + 2) in terms of the auxiliary ‘extended continued 
fractional’ (ECF) sequence f k .  These ECF quantities were defined by the recurrences 

(1.1) 
k = 1,2 ,  . . , , N f~tl(N) = ~ N + z ( N )  = . . = 0 

in the limit N + 00 ( f k  = limN+m fk(N)), i.e. totally analogous with the classical con- 
tinued fractions. 

In paper I1 (Znojil 1978) we used the generalised (matrix) form of recurrences 
(1.1) to invert any sparse matrix Q by means of its Hessenberg-type partitioning. In 
this paper, we intend to suggest an alternative generalisation of I which will be based 
on a representation of Q in the form of a product of the two-diagonal matrices. 

For the sake of brevity, we consider in detail only the simplest non-trivial case, 
namely the matrix Q given in the five-diagonal form. Thus, the method is presented 
in $ 2 ,  while in $ 3 the convergence and its acceleration are discussed thoroughly in 
the ECF context. Finally, $ 4 is devoted to physical examples (anharmonic propagators), 
and the various possible generalisations of the formalism are reviewed in $ 5 .  

@ 1983 The Institute of Physics 3313 
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2. The method 

2.1. Five-diagonal matrices 

Any finite five-diagonal matrix Q 

1 0 . . .  

0 . 0 Q k k - 2  Q k k - 1  Qkk Q k k + l  Q k k + z  0 . . . 0 (2.1) 

O I  

Q I I  0 1 2  0 1 3  0 * 

. . .  

. . .  
0 Q N N - 2  Q N N - I  QNN 

may be inverted numerically by the algorithms described by Grund (1977). Alterna- 
tively, it may also be partitioned (into the blockwise tridiagonal form) and inverted 
in terms of the (2 x Z)-dimensional matrix continued fractions (MCF) (Znojil 1977). 

In this paper, we intend to construct 0-' algebraically, by means of its complete 
factorisation into the easily invertible two-diagonal matrices 

: : : ] - I .  (2.2) 
1 -a1 ( ~ 1 ( ~ 2  - ( ~ 1 ( ~ 2 ( ~ 3  1' a l l . .  : 2 .  ..I=[ 1 -a2 a Z a 3  

. . .  
In  the 'non-degenerate' cases with Q k - 2 k  f 0 and Q k k + 2  # 0, we shall write . = I G 1 '  . . j x H x ( D 1 *  . 1 

GN DN 

\ . . .  1 C N  a N /  

with the trivial recurrences defining 

(2.4) 

from the first four free values G I ,  G2, D 1  and D 2 .  This simplifies the further 
notation-we may put 
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and obtain the required result in the form 

1 \ 

1 -P1 P l P 2  1 
1 - p 2  :::Ix[ 

. . .  

f l  

f 2 .  . 

In this way, the problem of inversion becomes reduced to the problem of the algebraic 
factorisation (2.5). 

2.2. Recurrent factorisation 

In (2 .5) ,  the 2 ( N  - 2 )  elements of the two outer (unit)  diagonals of H are represeqted 
by the products 

1 = akPk+l/fk+2 1 = a k  + 1 Y k  + 2 / f k  +2 k = l , 2  , . . . ,  N - 2 .  (2.7) 

When we denote uk = ak + P k  and vk+1= yk+l + S k + l ,  we may re-express also the 
2 ( N  - 1 )  elements bk and C k + l  of H in the form 

bk = U k / f k + l  +akPk+lUk+2/fk+2 

ck+l = vk+l/fk+l f U k + l a k + l Y k + Z / f k + Z  k = l , 2 , .  . . , N - 1 .  
(2.8) 

Finally, the main diagonal of H is related to the right-hand side of (2.5) by the relations 

(2.9) 
Ukvkl-1 f f & k + l S k + l Y k + 2  ak =-+- + k = 1 , 2  , . . . ,  N - 1 .  

f k  f k + l  f k  +Z 

Since bN = a N  = P N  = 0 and cN+1= y N  + I  = S N + 1 =  0,  we may initialise the recur- 
rences (2.7) by any ~ N - I (  = U N - 1  - P N - I )  and S N (  = U N  - Y N )  and define all the four 
two-diagonal factors in (2.5) by the recurrences 

f f k  =fk+2/(uk+l - a k + l )  S k + l  = f k  +Z/(vk+2 - a k + 2 )  k = 1 , 2  , . . . ,  N - 2 .  
(2.10) 

Similarly, the fundamental sequences U k ,  uk+l and l / fk+2,  k = 1 , 2 , .  . . , N - 1 ,  
( l / f N + l  = 0 )  may be generated from the trivial initialisation 

U N  = u N + 1  = f N + 1 =  0 f N  = l /aN.  (2.11) 

The corresponding recurrences 

uk =fk+l(bk -vk+Z) uk+l =fk+l(ck+l -uk+l) (2.12) 

and 

f k  = l / (ak  - U k u k + l / f k + l - f k + Z )  k = N - l , N - 2  , . . . ,  1 (2.13) 
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are coupled and follow from (2.8) and (2.9), respectively. This completes our descrip- 
tion of the numerical recurrent algorithm. We have only to perform the multiplication 
in (2.6), 

(2.14) 
f l ,  -(a 1 + P l)f 1 ,  (a  l a 2  + P  1 P 2  + P 1 a 2 1 f 1 ,  

H- '=  - ( y 2 + 8 2 ) ,  ( ~ l + P l ) ( ~ 2 + P 2 ) f l + f 2 ,  . * .  
( . . .  

and obtain the inverse matrix for any  finite N < m. 
Let us note that the algorithm has the following two merits. 
(1) Inverses of the lower submatrices of H 

are obtainable, by a mere change of indices 

\ 

(2.15) 

as byproducts of our recurrent procedure. This may prove to be useful in the 
applications of the type described in 3: 4 below. 

(2) The upper submatrices of the inverse H-' have a simple form (2.14) where 
CY, P,  y and S may systematically be replaced by U and U only, 

i f l y  - u l f l ,  ( U 1 9  u 2 - f 3 ) f l ,  * * 

( a i - f 3 ) f 2 f i j  . . (2.17) 

(see appendix for details). 

2.3. The N + 03 limit 

Provided that the sequences U k ,  U k + l  and f k + 2  are known in the infinite-dimensional 
limit N +a, the values of (Yk or & + I  are given by their respective analytic continued 
fractional expansions 

(2.18) 

In the light of the definitions of u k  and u k + l  we may write also, alternatively, 

f k  + 2  fk +2 
/3k = u k  - Y k + 1  = u k + l -  

fk +3  f k + 3  
u k + l -  U k + 2 -  

u k + 2 - .  . . v k + 3 - .  . , 

and apply the standard convergence criteria (Wall 1948). 

(2.19) 
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In  a similar way, sequences & and V k i l  may be defined directly in terms of the 
only sequence f k  

U k  = f k + i b k - f k + l f k + 2 C k + Z + f k + i f k + 2 f k + 3 b k + Z - ~  
(2.20) 

vk+1 =fk+lck+l - fk+l fk+~bk+l  + f k + l f k + Z f k + 3 C k + 3 - .  . . 
(see (2.12)). The appropriate convergence criteria should be used again (e.g. Korn 
and Korn 1968). 

In the third step, the recurrence (2.13) may be reformulated in a surprising analogy 
with I. 

Theorem. The diagonal matrix elements 1 / f k  in (2.5) coincide with the ECF quantities 
of the form (1.1). 

Proof. We may consider only k = 1 and N = 00 without loss of generality. Then, to 
obtain the expansion of f l  ( = f l y : ,  cf (2.14)), we have to employ (2.13) with k = 2 as 
a redefinition of 

f 3  = - f ~ f 3 f 4  + a ~ f ~ f 3  - u ~ f ~ v 3  

and insert it into (2.13) with k = 1. After an easy rearrangement (cf (2.12) with k = 1 
and (2.20)), we get precisely formula (1.1) where k = 1 and the compact prescription 

U :3' = 6162 + ~ 2 ~ 3  - a2 = a:" =a1  1 -61c2 

ai4' =-blC4-c263+ 1 u : ~ ~ - ~ )  = b1b2n-2+~Z~2n-1  (2.21) 

u : ~ " '  =-61cZn - ~ 2 6 2 ~ - 1  n 2 3  

defines the coefficients. 

In the final step, the matrix elements of H - '  are to be specified as the sums of 
products of the ECF quantities f k  (further algebra is done in the appendix). 

3. Fixed point initialisations 

3.1. Ambiguities of the inversion 

In  the infinite-dimensional cases, we may construct the non-trivial SOhtiOnS wk = 
-wk-I / f fk - I ,  k = 2,3,  . . . to the homogeneous systems of equations 

1 f f 1  j ? ,". . ,)[;:]=o (3.1) 

which can even be normalised for l f f k l 3  1 + E ,  E > 0 ,  k > ko.  Therefore, up to some 
exceptional situations where w 1  # 0 (Znojil 1983) we must complement (2.2) by the 
condition w l (  = w2 = .  . .) = 0. 

Furthermore, the different formal inverses H - '  may also be generated by the 
various auxiliary sequences, i.e. by the a priori unrestricted free choice of the four 
initial values 

U M  vM+l f M + l  f M  +Z (3.2) 
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at some fixed M 3 1. Hence, the choice of the values (3.2) represents, in fact, an 
independent 'boundary-condition-type' requirement. It has to suppress completely 
the algebraic ambiguity of the formal inverse (2.6) with N = 00. 

In general, this need not necessarily be equivalent to (2.11) in the limit N+CO 
but we accept such a specification of H - '  and intend only to accelerate the N + 00 

convergence by appropriate modifications of (2.11). 

3.2. Fixed point approximation 

At any finite index k = M < 00, merely one of the initialisations (3.2) may be precisely 
equivalent to the N +CO limit of (2.11). In its vicinity, there still exists a class of the 
approximate or 'effective' initialisations which would give the exact result in the M + CO 

limit. Finally, in the light of the example given in 54.2 some of the remaining 
initialisations may generate, in principle, entirely non-physical inverse matrices. 

In practical applications, a construction of the 'effective' initialisation may often 
be based on the weak N-dependence of the approximate values (3.2) when evaluated 
from (2.11) with some finite N >> M. Usually, the reliability of such a construction is 
closely related to the asymptotic smoothness (i.e. slowness of variation or non- 
oscillatory character) of the elements cM - c, bM - b and aM - a of H as functions of 
their index M >> 1. 

Vice versa, in the smooth cases we may also expect an approximate index- 
independence of the asymptotic auxiliary sequences (3.2) themselves. Obviously, the 
constant approximants 

f M  -f U M - U  u M + l - U  (YM-(Y s M + I - s . . .  

must satisfy the approximate recurrences and may be therefore identified with some 
of the roots of the system 

s2 - s u  + f = 0 2 a - a u + f = O  

U = (6 - ~ ) f  U = (c -u) f  (3.3) 
l/f = a  - (uu / f ) - f  

i.e. with the stationary (fixed) points of the five mappings (2.10)-(2.13). 

definitions 
The algebraic determination of the fixed points may be reduced here to the four 

2a =u+(u2-4f) l /2  

2p = U  -(u2-4f)1/2 

2y = U + (U - 4f)"Z 

26 = U  -(u2-4f)1/2 

of the asymptotic two-diagonal factors in (2.51, with 

u=-B+-A f f u=-B--A f f 
l+ f  1-f l + f  1-f 

B = (b  + c ) / 2  A = (b  - ~ ) / 2  

and accompanied by the last item of (3.3). When we denote 

2x = f + l/f or f = X  - (X2-  1)1/2 

(3.4) 

(3.5) 
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for simplicity, this equation appears to be a cubic one, 

2X = a - B 2 / ( 2 X  + 2 )  + A 2 / ( 2 X  - 2 )  (3.6) 

and defines the last unknown fixed-point parameter in a purely algebraic manner. 

‘boundary-type’ conditions may be found in I or in 3; 4.2. 
The solution of (3.6) is not unique. Examples of analysis of the corresponding 

3.3. A systematic acceleration of convergence 

For the matrices H which violate the smoothness requirement, we have to reintroduce 
the indices into the definitions (3.4)-(3.6) (a  + aM, B, A + (bM & ~ ~ + ~ ) / 2  and X + 
X ( M  + 1 )  in (3.6),  f+f (M + 1 )  in (3.5) and U + U ( M ) ,  U + v ( M  + l),  a, /3 -* a ( M ) ,  
P ( M )  and y,  S + y ( M  + l ) ,  S ( M +  1 )  i n  (3.4)) and consider the deviations 

u k  = uk - U ( k  ) Vk+l=vk+l-U(k+1)  Fk+1 = f k + l  -f(k + 1) (3.7) 

etc, as the new auxiliary sequences. For them, the new recurrences may be derived 
by simple insertions. 

On the basis of the weakened ‘smoothness’ assumption, we may again introduce 
the fixed point approximation 

uk - u(k) v k + l -  V ( k  + 1) Fk+l - F ( k  + 1 )  

etc. Its merit is an expected smallness of the roots-we may specify them uniquely 
from the linearised equations giving, for example, F(k  + 1 )  as a simple rational function 
of the quantities f, f A ,  S 2 ,  T 2  and SA where 

f”  = f(k + 1 ) -  f(k + 2 )  

u ( k )  = S  + T v ( k + l ) = S - T  

u A =  u ( k ) - u ( k  + 1 )  = S A +  TA 

U’ = ~ ( k  + 1 )  - ~ ( k  + 2 )  = S A -  T A .  

In principle, the higher-order fixed-point approximants may be generated algebrai- 
cally in a systematic way. Their shortcoming is their increasingly complicated form- 
for example, we get (with Q = f(k + 1 )  + F ( k  + 1 ) )  

T SA TA 

as the second-order analogue of ( 3 . 9 ,  the sixth-order polynomial counterpart to (3.6), 
etc. 

4. Applications 

4.1. Anharmonic oscillator 

In the harmonic oscillator basis In), n = 0,  1 ,  . . . , some properties of bound states 4 
of the anharmonic Hamiltonian 

x = p 2  + x 2  + ,4x4 
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may be inferred directly from the Schrodinger equation 

x* =E* 

or rather from its projection 
(iQ4 = 0 Q=E-( iX4 (i =( i2  

Qx = v  x = d *  cp =4E$ a $ *  (4.1) 

i.e. from the linear relations 

between the 'model-space' projections $4 ($ = 1 - 4  = X L = O  Im>(ml) and the rest of 
4. The main reason is that the matrix Q is five-diagonal; an explicit form of its matrix 
elements may be found, e.g., in Graffi and Grecchi (1975). 

The explicit inversion of Q in (4.1) may be based on its factorisation (2.5) in the 
asymptotic region where we may put 

G, = D, = n 2  x constant(i) x O ( n )  n >> 1 

and 

a , = a = 6  6 ,  = c , + I  = b = B = 4 A=O 

in (2.3). Then, the fixed-point prescription (3.6) degenerates to the quadratic equation 
with the unique root X =f= 1.  From the remaining relations, we get also U = zi = 2, 
a = p = y = S = 1 and 

1 1  -2 3 -4 . . . \  
-2  5 -8 1 1  . . .  

3 -8 14 -20 . . .  i . . .  H-' = (4.2) 

(cf (2.6)).  Hence, in the leading order approximation, the algebraic inversion of Q 
is simple and unique. It also demonstrates that the convergence of llqbll, if any, is 
rather slow and may be characterised only in terms of the higher-order corrections. 
This will not be done here. 

4.2. Decadic-decadic propagator 

A symmetrically anharmonic phenomenological Hamiltonian 

as>O P s > O  
% = asp 10 + a 4 p 8 + .  . * + a I p Z + p I X  2 +. . . + p 4 X 8 + p S X 1 0  

(4.3) 
was introduced by Znojil(l981). In the asymptotic (4-projected, high-lying harmonic- 
oscillator) region, it was shown to acquire approximately the five-diagonal form, with 

G, = D, = n x constant(i) + O(n4) 

ai = a  = 25.2 6 ,  = ~ , + 1  = B  = 12 A = O  

in (2.3). The numerical inversion of H gave H;: = 0.055 728 . . . . 
In the present ECF context, we shall reproduce this numerical value by purely 

non-numerical means, clarify its algebraic background and illustrate the character of 
ambiguities met during its derivation. To achieve this, it is sufficient to apply the 
results of 3: 3-the two roots of (3.6) and four values of f  are listed in table 1.  
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Table 1. Numerical values of p a r a s e t e n  for the asymptotic factorisation of the decadic- 
decadic propagators (R, = 1 i 2/J5, second row is not spurious). 

X f ( = H ; :  1 U max(y, 6) min(v, 6) 

9 5R: (=  17.944 27 1 90 .  . . ) 6R+ 5R3,(=19.47..  , ) R, 
9 SR!(=O.OSS 728 0 9 0 . .  . ) 6R- 5R_(=0 .527 . .  .) R 
- 1 3  
5 5 10 5R + 5R- 
5 5 2 R _ ( =  1.894..  . ) R-  1 - 13 

The second row in  table 1 reproduces the numerical solution and coincides, 
therefore, with the stable fixed point of the corresponding mappings initialised by 
(2.11) at N + 00. The remaining items define the spurious solutions and the inverse 
H-' which cannot be obtained by the ordinary truncation method. 

Without any recourse to numerical computations, the rigorous elimination of the 
spurious inverses is easy in the present example. Indeed, we get the wavefunction &I 
from (4.1) and (4.3) as a supe 

(:. -6 1 ;. 
\ . . .  I 

Since 

Josition of the first n + 1 columns of the matrix 

1 
-Y 1 
Y 2  -Y 1 

. . .  

1 I 

. . .  

6"+6"- 'y+ .  . . + y m  =(S"+ ' -ymt1) / (6-y)  S f Y  (4.5) 

we arrive at the rigorous asymptotic estimate 

Now, the geometric convergence criterion (Korn and Korn 1968) implies that none 
of the spurious fixed points f can lead to the normalisable eigenstate 4 or x of the 
decadic-decadic Hamiltonian 2 since max(y, 6 )  > 1. 

5. Generalisations and summary 

Any band matrix Q with t upper and s lower diagonals may be factorised in analogy 
with the t = s = 2 example of 9: 2. Similarly, even to invert any blockwise Hessenberg 
matrix with the variable partitions, the same decomposition into the two-diagonal 
matrix factors with some zero elements ai,. . . may be used. The resulting inverses 
will be generalisations of equation (2.6). 

A peculiarity of the three-and five-diagonal examples lies in their non-numerical 
character (cf our ECF theorem, the formulae in the appendix or the simplicity of the 
fixed points). In the applications, they may therefore be used as the solvable models 
of interaction (see our first example) etc. 

The pentadiagonal extension of the tridiagonal matrices may also prove to be 
useful as the mathematical approximant whenever the ordinary methods diverge (cf, 
e.g., the perturbative expansion of our first example as discussed, e.g., by Killingbeck 
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(1977)), or oscillate (‘averages’ of Richardson and Blankenbecler (1979) resemble 
our fixed points). In numerical practice, they could also sometimes replace the standard 
(finite-submatrix) truncation approximants in a way similar to our second example. 

Appendix. Compactified form of inverse of the five-diagonal matrix H 

The explicit form (2.6) of H - ’  contains the four sequences a k ,  P k ,  y k + l  and & + l .  The 
main idea of their replacement by mere ‘sums’ U k  and U k + l  (compare equations (2.14) 
and (2.17)) lies in the direct use of the ‘upper times lower’ decomposition (2.5) written 
in the form 

H =  

We shall now construct H - ’  by inverting the triangular factors in (Al ) ,  

Such an approach cannot be generalised too easily but it gives a more compact 
result-the multiplication in (A2) is still feasible ‘by hand’ for the five-diagonal H. 
We intend to show here how the necessary algebraic manipulations may employ the 
recurrences valid for the sequences U k ,  u k + l  and f k .  

Without loss of generality, we shall evaluate only the sequence z:), k = 2, 3, . , . N .  
From its definition we get, omitting the upper indices, 

v z + z *  = 0 f 3 + l J 3 Z 2 + Z 3 = 0 . .  . 
i.e. with z = 1 and z o  = 0, 

z k  = - v k z k - l - f k z k - 2  k = 2 , 3  , . . . ,  N .  (A3) 
The explicit form of the first few expressions z k  inspires us to use the ansatz 

In this setting, the mathematical induction is easy (cf also the proof of the theorem 
in $ 2 )  and gives the recurrences 

D k  = - A k - 1  B k  = A k - z + A k - l b k  

(‘45) 
A k  = - ( B k - 2  f U k - 1 A k - ~ + C k A k - l )  k = 3 , 4 ,  . . . .  

Obviously, the first two of them are mere definitions while the third one, 

A k  = - ( C k A k - I  f U k - i A k - 2  b k - ~ A k - 3  + A k - 4 ) ,  (A61 
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has an explicit solution 

Ak det S ( k )  k = 2 ,3 , .  . . , N 

0 1 ck-1 ak-1 i 0 . . .  0 1  -1. ck 

c1 a2 62 1 0 . . .  
1 c3 a3 b3 1 0 

0 . . .  
. . .  S ( k )  = 

After a simple rearrangement of (A4), we get the final formula 

3323 

(A71 

. ~ ; " = ( - 1 ) ~ + ' f 2 f 3 . .  .fk[defS(k)-Uk d e t S ( k - l ) f f k + l d e t S ( k - 2 ) ]  
(A81 

k = 2 , 3 , , .  . , N det S(0) = 0 det S(1) = 1. 

Its main merits are: 
( i )  When inserted into (A2), it provides a compact definition of H i '  for the small 

indices i # j <c N.  
(ii) Due to its linear u-dependence (which simplifies also the transpositions 

H ( U ,  U )  = H ~ ( v ,  U ) ) ,  its ECF representation is very similar to the ECFdenominator itself. 
(iii) The presence of factors f,fi+' . , . f , + k  in resembles and generalises the 

continued-fractional factorisation encountered in the tridiagonal case (see I) and may 
also be generalised to the more-diagonal matrices. 

The diagonal matrix elements H i '  are exceptional. Their ECF form is extremely 
simple 

Hi' = f l f 2 . .  . f , [detH(i- l ) - f ,+ldetH(i-2)]  

i = 1 , 2 , .  . . det H(-1) = 0 det H ( 0 )  = 1 (A91 

H ( i ) =  . . . i a1 bl 1 . . .  1 0 . . . 1 c, a , /  

and follows directly from ( A l )  and from the Kramer rule. 

References 

Bassichis W H and Strayer M R 1978 Phys. Rev. C 18 1505 
Graffi S and Grecchi V 1975 Lett. Nuouo Cimento 12 425 
Grund F 1977 Zh.  Vychisl. Mat. Fiz. 17 11 17-22 
Haydock R and Kelly M J 1975 J.  Phys. C: Solid State Phys. 8 L290-3 
Killingbeck J 1977 Rep. Prog. Phys. 40 963-1031 
Korn G A and Korn T M 1968 Mathematical Handbook (New York: McGraw-Hill) 
Richardson J L and Blankenbecler R 1979 Phys. Rev. D 19 496 
Wall H S 1948 Analytic Theory of Continued Fractions (New York: Van Nostrand) 
Znojil M 1976 J.  Phys. A: Math. Gen. 9 1-10 
- 1977 J.  Math. Phys. 18 717 
- 1978 J.  Phys. A: Math. Gen. 11 1501-8 
- 1981 Lett. Math. Phys. 5 405-9 
- 1983 1. Phys. A: Math. Gen. 16 213-20 


